Wildgame Innovations

An Introduction to Statistical Learning: with Applications in R by Gareth James

Description: An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility. FORMAT Paperback LANGUAGE English CONDITION Brand New Back Cover An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of na Author Biography Gareth James is a professor of data sciences and operations, and the E. Morgan Stanley Chair in Business Administration, at the University of Southern California. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.Daniela Witten is a professor of statistics and biostatistics, and the Dorothy Gilford Endowed Chair, at the University of Washington. Her research focuses largely on statistical machine learning techniques for the analysis of complex, messy, and large-scale data, with an emphasis on unsupervised learning.Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Table of Contents Preface.- 1 Introduction.- 2 Statistical Learning.- 3 Linear Regression.- 4 Classification.- 5 Resampling Methods.- 6 Linear Model Selection and Regularization.- 7 Moving Beyond Linearity.- 8 Tree-Based Methods.- 9 Support Vector Machines.- 10 Deep Learning.- 11 Survival Analysis and Censored Data.- 12 Unsupervised Learning.- 13 Multiple Testing.- Index. Feature Presents an essential statistical learning toolkit for practitioners in science, industry, and other fields Demonstrates application of the statistical learning methods in R Includes new chapters on deep learning, survival analysis, and multiple testing Covers a range of topics, such as linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and deep learning Features extensive color graphics for a dynamic learning experience Includes supplementary material: sn.pub/extras Details ISBN1071614207 Author Robert Tibshirani Short Title An Introduction to Statistical Learning Pages 607 Series Springer Texts in Statistics Language English Year 2022 Edition 2nd ISBN-10 1071614207 ISBN-13 9781071614204 Format Paperback DEWEY 519.5 Publisher Springer-Verlag New York Inc. Imprint Springer-Verlag New York Inc. Place of Publication New York, NY Country of Publication United States Publication Date 2022-07-30 AU Release Date 2022-07-30 NZ Release Date 2022-07-30 US Release Date 2022-07-30 UK Release Date 2022-07-30 Subtitle with Applications in R Illustrations 182 Illustrations, color; 9 Illustrations, black and white; XV, 607 p. 191 illus., 182 illus. in color. Edition Description 2nd ed. 2021 Alternative 9781071614174 Audience Undergraduate We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:137184938;

Price: 116.6 AUD

Location: Melbourne

End Time: 2024-10-17T05:03:27.000Z

Shipping Cost: 16.7 AUD

Product Images

An Introduction to Statistical Learning: with Applications in R by Gareth James

Item Specifics

Restocking fee: No

Return shipping will be paid by: Buyer

Returns Accepted: Returns Accepted

Item must be returned within: 30 Days

Format: Paperback

Language: English

ISBN-13: 9781071614204

Author: Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

Type: Does not apply

Book Title: An Introduction to Statistical Learning

Recommended

Modern Philosophy: An Introduction and Survey - Paperback - GOOD
Modern Philosophy: An Introduction and Survey - Paperback - GOOD

$4.44

View Details
Ethical Choices: An Introduction to Moral Philosophy with Cases - GOOD
Ethical Choices: An Introduction to Moral Philosophy with Cases - GOOD

$7.17

View Details
An Introduction To Brain and Behavior. Fourth Edition - Hardcover - GOOD
An Introduction To Brain and Behavior. Fourth Edition - Hardcover - GOOD

$7.61

View Details
An Introduction to Numerical Analysis - Paperback By Atkinson, Kendall - GOOD
An Introduction to Numerical Analysis - Paperback By Atkinson, Kendall - GOOD

$45.97

View Details
An Introduction to Community & Public Health - Paperback - GOOD
An Introduction to Community & Public Health - Paperback - GOOD

$5.04

View Details
An Introduction to Classical Education (Latin Edition) - Paperback - VERY GOOD
An Introduction to Classical Education (Latin Edition) - Paperback - VERY GOOD

$4.27

View Details
usa st. An Introduction to Statistical Learning: With Applications, HARDCOVER
usa st. An Introduction to Statistical Learning: With Applications, HARDCOVER

$24.50

View Details
An Introduction to the New Testament - Hardcover By Carson, D A - GOOD
An Introduction to the New Testament - Hardcover By Carson, D A - GOOD

$11.26

View Details
Biological Psychology: An Introduction to Behavioral, Cognitive, and - VERY GOOD
Biological Psychology: An Introduction to Behavioral, Cognitive, and - VERY GOOD

$8.12

View Details
An Introduction to Management Science: Quantitative Approach - VERY GOOD
An Introduction to Management Science: Quantitative Approach - VERY GOOD

$13.08

View Details